Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Cell Stem Cell ; 31(4): 467-483.e6, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38537631

Brain injury is highly associated with preterm birth. Complications of prematurity, including spontaneous or necrotizing enterocolitis (NEC)-associated intestinal perforations, are linked to lifelong neurologic impairment, yet the mechanisms are poorly understood. Early diagnosis of preterm brain injuries remains a significant challenge. Here, we identified subventricular zone echogenicity (SVE) on cranial ultrasound in preterm infants following intestinal perforations. The development of SVE was significantly associated with motor impairment at 2 years. SVE was replicated in a neonatal mouse model of intestinal perforation. Examination of the murine echogenic subventricular zone (SVZ) revealed NLRP3-inflammasome assembly in multiciliated FoxJ1+ ependymal cells and a loss of the ependymal border in this postnatal stem cell niche. These data suggest a mechanism of preterm brain injury localized to the SVZ that has not been adequately considered. Ultrasound detection of SVE may serve as an early biomarker for neurodevelopmental impairment after inflammatory disease in preterm infants.


Brain Injuries , Intestinal Perforation , Motor Disorders , Premature Birth , Infant , Female , Infant, Newborn , Humans , Animals , Mice , Infant, Premature , Intestinal Perforation/complications , Lateral Ventricles , Stem Cell Niche , Motor Disorders/complications , Brain Injuries/complications , Brain Injuries/diagnostic imaging
3.
Biofilm ; 4: 100090, 2022 Dec.
Article En | MEDLINE | ID: mdl-36389263

Filamentous fungi are ubiquitous and frequent components of biofilms. A means to visualize them and quantify their viability is essential for understanding their development and disruption. However, quantifying filamentous fungal biofilms poses challenges because, unlike yeasts and bacteria, they are not composed of discrete cells of similar size. This research focused on filamentous fungal biofilms that are representative of those in the built environment. The objective of this study was to develop a rapid method to examine biofilm structure and quantify live (metabolically active/ membrane undamaged) and dead (inactive/ membrane damaged) cells in Aspergillus niger biofilms utilizing a fluorescent probe staining method and confocal laser scanning microscopy (CLSM). For this, we compared two commercially available probe staining kits that have been developed for bacterial and yeast systems. One method utilized the classic cell stain FUN 1 that exhibits orange-red fluorescent intravacuolar structures in metabolically active cells, while dead cells are fluoresced green. The second method utilized a combination of SYTO9 and propidium iodide (PI), and stains cells based on their membrane morphology. SYTO9 is a green fluorescent stain with the capacity to penetrate the living cell walls, and PI is a red fluorescent stain that can only penetrate dead or dying cells with damaged cell membranes. Following staining, the biofilms were imaged using CLSM and biofilm volumes and thickness were quantified using COMSTAT, a computer program that measures biofilm accumulation from digital image stacks. The results were compared to independent measurements of live-dead cell density, as well as a classic cell viability assay-XTT. The data showed that the combination of SYTO9 and PI is optimal for staining filamentous fungal biofilms.

4.
Pharmaceutics ; 14(8)2022 Aug 03.
Article En | MEDLINE | ID: mdl-36015246

Globally, cancer is amongst the most deadly diseases due to the low efficiency of the conventional and obsolete chemotherapeutic methodologies and their many downsides. The poor aqueous solubility of most anticancer medications and their low biocompatibility make them ineligible candidates for the design of delivery systems. A significant drawback associated with chemotherapy is that there are no advanced solutions to multidrug resistance, which poses a major obstacle in cancer management. Since RNA interference (RNAi) can repress the expression of genes, it is viewed as a novel tool for advanced drug delivery. this is being explored as a promising drug targeting strategy for the treatment of multiple diseases, including cancer. However, there are many obstructions that hinder the clinical uses of siRNA drugs due to their low permeation into cells, off-target impacts, and possible unwanted immune responses under physiological circumstances. Thus, in this article, we review the design measures for siRNA conveyance frameworks and potential siRNA and miRNA drug delivery systems for malignant growth treatment, including the use of liposomes, dendrimers, and micelle-based nanovectors and functional polymer-drug delivery systems. This article sums up the advancements and challenges in the use of nanocarriers for siRNA delivery and remarkably centers around the most critical modification strategies for nanocarriers to build multifunctional siRNA and miRNA delivery vectors. In short, we hope this review will throw light on the dark areas of RNA interference, which will further open novel research arenas in the development of RNAi drugs for cancer.

5.
Pathogens ; 11(7)2022 Jul 15.
Article En | MEDLINE | ID: mdl-35890044

Pathogenic viruses with an RNA genome represent a challenge for global human health since they have the tremendous potential to develop into devastating pandemics/epidemics. The management of the recent COVID-19 pandemic was possible to a certain extent only because of the strong foundations laid by the research on previous viral outbreaks, especially Ebola Virus Disease (EVD). A clear understanding of the mechanisms of the host immune response generated upon viral infections is a prime requisite for the development of new therapeutic strategies. Hence, we present here a comparative study of alterations in immune response upon SARS-CoV-2 and Ebola virus infections that illustrate many common features. Vaccination and pregnancy are two important aspects that need to be studied from an immunological perspective. So, we summarize the outcomes and immune responses in vaccinated and pregnant individuals in the context of COVID-19 and EVD. Considering the significance of immunomodulatory approaches in combating both these diseases, we have also presented the state of the art of such therapeutics and prophylactics. Currently, several vaccines against these viruses have been approved or are under clinical trials in various parts of the world. Therefore, we also recapitulate the latest developments in these which would inspire researchers to look for possibilities of developing vaccines against many other RNA viruses. We hope that the similar aspects in COVID-19 and EVD open up new avenues for the development of pan-viral therapies.

...